首页  ·  知识 ·  人工智能
机器学习评估指标AUC综述
吴海波  DataFunTalk  综合  编辑:拾柒   图片来源:网络
在互联网的排序业务中,比如搜索、推荐、广告等,AUC(AreaundertheCurveofROC)是一个非常常见的评估指标。

▌引言

在互联网的排序业务中,比如搜索、推荐、广告等,AUC ( Area under the Curve of ROC ) 是一个非常常见的评估指标。网上关于 AUC 的资料很多,知乎上也有不少精彩的讨论,本文尝试基于自身对 AUC 的理解做个综述,水平有限,欢迎指出错误。

俗话说,提出正确的问题就成功了一半,本文先提出以下几个问题,希望大家读完能够加深对下列问题的理解。

  1. AUC 有几种理解?

  2. AUC 的什么特性让它如此受欢迎?

  3. AUC 的值和什么有关,多高是高?

  4. AUC 提高了是否代表线上指标会提高?

  5. 有没有更好的指标替代 AUC?

▌几种 AUC 的理

一般有两大类解释,一种是基于 ROC 线下面积,需要理解混淆矩阵,包括精确率、召回率、F1 值、ROC 等指标的含义。另外一种是基于概率的解释,模型的排序能力。

在参考[1]和[4]中,关于 AUC 定义本身的讨论非常详细,上述两大类都有不同形式的解释。还包括如何用 AUC 做目标去优化,AUC 的各种计算方法,本文不再赘述,有兴趣的同学自己去看下。

▌AUC 的排序特性

对比 accuracy、precision 等指标,AUC 指标本身和模型预测 score 绝对值无关,只关注排序效果,因此特别适合排序业务。

为何与模型预测 score 值无关为何是很好的特性呢?假设你采用 precision、F1 等指标,而模型预测的 score 是个概率值,就必须选择一个阈值来决定哪些样本预测是1哪些是0,不同的阈值选择,precision 的值会不同,而 AUC 可以直接使用 score 本身,参考的是相对顺序,更加好用。

相对于 ROC 线下面积的解释,个人更喜欢排序能力的解释。参考[2]的解释通俗易懂:

例如0.7的 AUC,其含义可以大概理解为:给定一个正样本和一个负样本,在70%的情况下,模型对正样本的打分高于对负样本的打分。可以看出在这个解释下,我们关心的只有正负样本之间的分数高低,而具体的分值则无关紧要。

▌AUC 对均匀正负样本采样不敏感

正由于 AUC 对分值本身不敏感,故常见的正负样本采样,并不会导致 AUC 的变化。比如在点击率预估中,处于计算资源的考虑,有时候会对负样本做负采样,但由于采样完后并不影响正负样本的顺序分布。

即假设采样是随机的,采样完成后,给定一条正样本,模型预测为 score1,由于采样随机,则大于 score1 的负样本和小于 score1 的负样本的比例不会发生变化。

但如果采样不是均匀的,比如采用 word2vec 的 negative sample,其负样本更偏向于从热门样本中采样,则会发现 AUC 值发生剧烈变化。

▌AUC 值本身有何意义

我们在实际业务中,常常会发现点击率模型的 AUC 要低于购买转化率模型的 AUC。正如前文所提,AUC 代表模型预估样本之间的排序关系,即正负样本之间预测的 gap 越大,AUC 越大。

通常,点击行为的成本要低于购买行为,从业务上理解,点击率模型中正负样本的差别要小于购买力模型,即购买转化模型的正样本通常更容易被预测准。

细心的童鞋会想,既然 AUC 的值和业务数据本身有关,那么它的值为多少的时候算好呢?

▌AUC 值本身的理论上线

假设我们拥有一个无比强大的模型,可以准确预测每一条样本的概率,那么该模型的 AUC 是否为1呢?现实常常很残酷,样本数据中本身就会存在大量的歧义样本,即特征集合完全一致,但 label 却不同。因此就算拥有如此强大的模型,也不能让 AUC 为1。

因此,当我们拿到样本数据时,第一步应该看看有多少样本是特征重复,但 label 不同,这部分的比率越大,代表其“必须犯的错误”越多。学术上称它们为 Bayes Error Rate,也可以从不可优化的角度去理解。

我们花了大量精力做的特征工程,很大程度上在缓解这个问题。当增加一个特征时,观察下时候减少样本中的 BER,可作为特征构建的一个参考指标。

▌AUC 与线上业务指标的宏观关系

AUC 毕竟是线下离线评估指标,与线上真实业务指标有差别。差别越小则 AUC 的参考性越高。比如上文提到的点击率模型和购买转化率模型,虽然购买转化率模型的 AUC 会高于点击率模型,但往往都是点击率模型更容易做,线上效果更好。

购买决策比点击决策过程长、成本重,且用户购买决策受很多场外因素影响,比如预算不够、在别的平台找到更便宜的了、知乎上看了评测觉得不好等等原因,这部分信息无法收集到,导致最终样本包含的信息缺少较大,模型的离线 AUC 与线上业务指标差异变大。

总结起来,样本数据包含的信息越接近线上,则离线指标与线上指标 gap 越小。而决策链路越长,信息丢失就越多,则更难做到线下线上一致。

▌AUC 提升和业务指标不一致

好在实际的工作中,常常是模型迭代的 auc 比较,即新模型比老模型 auc 高,代表新模型对正负样本的排序能力比老模型好。理论上,这个时候上线 abtest,应该能看到 ctr 之类的线上指标增长。

实际上经常会发生不一致,首先,我们得排除一些低级错误:

1. 排除 bug,线上线下模型 predict 的结果要符合预期。

2. 谨防样本穿越。比如样本中有时间序类的特征,但 train、test 的数据切分没有考虑时间因子,则容易造成穿越。

更多细节请看参考[3]和[5]

▌AUC 计算逻辑不足与改进

AUC 计算是基于模型对全集样本的的排序能力,而真实线上场景,往往只考虑一个用户一个 session 下的排序关系。这里的 gap 往往导致一些问题。正如参考[3]中的举例的几个 case,比较典型。主要包括两点:

  1. 线上会出现新样本,在线下没有见过,造成 AUC 不足。这部分更多是采用 online learning 的方式去缓解,AUC 本身可改进的不多。

  2. 线上的排序发生在一个用户的 session 下,而线下计算全集 AUC,即把 user1 点击的正样本排序高于 user2 未点击的负样本是没有实际意义的,但线下 auc 计算的时候考虑了它。

阿里在论文:Deep Interest Network for Click-Through Rate Prediction 中提出了 group auc 来处理上述问题。公式如下:

image.png

即以 user 为 group,在对 user 的 impression 做加权平均。私以为,只是对用户做 group 还不够,应该是基于 session 去做 group。

最后,AUC 这个问题是在模型优化到一定程度才需要考虑的。大部分情况下,如果模型的 auc 有大幅提升,线上效果一般是一致的。如果不一致,请先从产品形态去思考有没有坑。

本文作者:吴海波 来源:DataFunTalk
CIO之家 www.ciozj.com 微信公众号:imciow
   
免责声明:本站转载此文章旨在分享信息,不代表对其内容的完全认同。文章来源已尽可能注明,若涉及版权问题,请及时与我们联系,我们将积极配合处理。同时,我们无法对文章内容的真实性、准确性及完整性进行完全保证,对于因文章内容而产生的任何后果,本账号不承担法律责任。转载仅出于传播目的,读者应自行对内容进行核实与判断。请谨慎参考文章信息,一切责任由读者自行承担。
延伸阅读