工业互联网平台需要解决多类工业设备接入、多源工业数据集成、海量数据管理与处理、工业数据建模分析、工业应用创新与集成、工业知识积累迭代实现等一系列问题,涉及七大类关键技术,分别为数据集成和边缘处理技术、IaaS技术、平台使能技术、数据管理技术、应用开发和微服务技术、工业数据建模与分析技术、安全技术。
1.数据集成与边缘处理技术
设备接入:基于工业以太网、工业总线等工业通信协议,以太网、光纤等通用协议,3G/4G、NB-IOT等无线协议将工业现场设备接入到平台边缘层。
协议转换:一方面运用协议解析、中间件等技术兼容ModBus、OPC、CAN、Profibus等各类工业通信协议和软件通信接口,实现数据格式转换和统一。另一方面利用HTTP、MQTT等方式从边缘侧将采集到的数据传输到云端,实现数据的远程接入。
边缘数据处理:基于高性能计算芯片、实时操作系统、边缘分析算法等技术支撑,在靠近设备或数据源头的网络边缘侧进行数据预处理、存储以及智能分析应用,提升操作响应灵敏度、消除网络堵塞,并与云端分析形成协同。
2.IaaS技术
基于虚拟化、分布式存储、并行计算、负载调度等技术,实现网络、计算、存储等计算机资源的池化管理,根据需求进行弹性分配,并确保资源使用的安全与隔离,为用户提供完善的云基础设施服务。
3.平台使能技术
资源调度:通过实时监控云端应用的业务量动态变化,结合相应的调度算法为应用程序分配相应的底层资源,从而使云端应用可以自动适应业务量的变化。
多租户管理:通过虚拟化、数据库隔离、容器等技术实现不同租户应用和服务的隔离,保护其隐私与安全。
4.数据管理技术
数据处理框架:借助Hadoop、Spark、Storm等分布式处理架构,满足海量数据的批处理和流处理计算需求。
数据预处理:运用数据冗余剔除、异常检测、归一化等方法对原始数据进行清洗,为后续存储、管理与分析提供高质量数据来源。
数据存储与管理:通过分布式文件系统、NoSQL数据库、关系数据库、时序数据库等不同的数据管理引擎实现海量工业数据的分区选择、存储、编目与索引等。
5.应用开发和微服务技术
多语言与工具支持:支持Java,Ruby和PHP等多种语言编译环境,并提供Eclipse integration,JBoss Developer Studio、git和 Jenkins等各类开发工具,构建高效便捷的集成开发环境。
微服务架构:提供涵盖服务注册、发现、通信、调用的管理机制和运行环境,支撑基于微型服务单元集成的“松耦合”应用开发和部署。
图形化编程:通过类似Labview的图形化编程工具,简化开发流程,支持用户采用拖拽方式进行应用创建、测试、扩展等。
6.工业数据建模与分析技术
数据分析算法:运用数学统计、机器学习及最新的人工智能算法实现面向历史数据、实时数据、时序数据的聚类、关联和预测分析。
机理建模:利用机械、电子、物理、化学等领域专业知识,结合工业生产实践经验,基于已知工业机理构建各类模型,实现分析应用。
7.安全技术
数据接入安全:通过工业防火墙技术、工业网闸技术、加密隧道传输技术,防止数据泄漏、被侦听或篡改,保障数据在源头和传输过程中安全。
平台安全:通过平台入侵实时检测、网络安全防御系统、恶意代码防护、网站威胁防护、网页防篡改等技术实现工业互联网平台的代码安全、应用安全、数据安全、网站安全。
访问安全:通过建立统一的访问机制,限制用户的访问权限和所能使用的计算资源和网络资源实现对云平台重要资源的访问控制和管理, 防止非法访问。
在上述七大类技术中,通用平台使能技术、工业数据建模与分析技术、数据集成与边缘处理技术、应用开发和微服务技术正快速发展,对工业互联网平台的构建和发展产生深远影响。在平台层,PaaS技术、新型集成技术和容器技术正加速改变信息系统的构建和组织方式。在边缘层,边缘计算技术极大的拓展了平台收集和管理数据的范围和能力。在应用层,微服务等新型开发框架驱动工业软件开发方式不断变革,而工业机理与数据科学深度融合则正在引发工业应用的创新浪潮。
本文作者:CIO之家的朋友 来源:CSDN
CIO之家 www.ciozj.com 微信公众号:imciow