首页  ·  知识库 ·  大数据
网格模式   列表模式
  • 知识图谱是结构化的语义知识库,用于迅速描述物理世界中的概念及其相互关系,通过将数据粒度从document级别降到data级别,聚合大量知识,从而实现知识的快速响应和推理。
  • 业务数字化的目的是打造一体化的业务流、信息流与数据流
  • 多套不同的系统,听起来是不是有点多,且不必要?但在这家公司漫长的信息化和数字化旅程中,这些系统都是为了回应在不同区域更快速地开展业务的需求而建设完成的。或许一个事物的发展多半总是在
  • 数据质量人人有责,这不仅仅只是一句口号,更是数据工作者的生命线。数据质量的好坏直接决定着数据价值高低。
  • 良好的数据模型能极大地减少不必要的数据冗余,也能实现计算结果复用,极大地降低大数据系统中的存储和计算成本。
  • 数据质量正是企业应用数据的瓶颈,高质量的数据可以决定数据应用的上限,而低质量的数据则必然拉低数据应用的下限。
  • 本标准规定了XX公司数据质量管理内容、管理机制和工作流程。本标准适用于XX所有项目整个生命周期的数据质量管理,非项目可参照使用。
  • 数据研发规范旨在为广大数据研发者、管理者提供规范化的研发流程指导方法,目的是简化、规范日常工作流程,提高工作效率,减少无效与冗余工作,赋能企业、政府更强大的数据掌控力来应对海量增长
  • 企业要找到一个合适的数据领域的人才也比较困难。可以说,每个细分领域只要你做好了,做精通了都是很有前景的。但不同的细分领域所承担的职责确实不同
  • 自从大数据概念开始兴起后,好像人们都不怎么谈指标了,而津津乐道于标签。数字经济时代,谈论指标真的落伍了吗?其实未必!指标也好,标签也罢,只要用好都能发挥其价值。怎样才能用好它们呢,我觉得要
  • 数字化转型主要包括业务数字化、数据资产化、资产业务化、业务智能化几个阶段。在不同的阶段,分别需要哪些数据产品呢?
  • 数据治理是企业数据建设必不可少的一个环节。好的数据治理体系可以盘活整条数据链路,最大化保障企业数据的采集、存储、计算和使用过程的可控和可追溯。