你的意见是?
首先,我们要纵览各种数据模型。这些模型的分类方法来自于Emil Eifrem 和 NoSQL databases。
文档数据库
图数据库
关系数据库
对象数据库
Key-Value数据库
BigTable类型数据库
源起:Google的论文 BigTable。
数据模型:列簇,每一行在理论上都是不同的
例子:HBase, Hypertable, Cassandra
优点:处理大量数据,应对极高写负载,高可用,支持跨数据中心, MapReduce。
数据结构服务
网格数据库
源起:数据网格和元组空间研究。
数据模型:基于空间的架构
例子:GigaSpaces, Coherence
优点:适于事务处理的高性能和高扩展性
你的应用应该用什么?
关键是要意识到不同的应用需要不同的数据模型和产品。选择合适的数据模型和产品。
要了解你的应用需要什么样的数据模型可以看 What The Heck Are You Actually Using NoSQL For? 在这篇文章里我总结了一些特色各异的非常规的使用场景。
适应你的需求和应用场景。依次而为你就能找到最适合你的架构的产品。无论NoSQL还是SQL都不重要。
综合考虑数据模型、产品特性和应用情景。不同产品功能各异,只凭数据模型来决定选择谁是不可能的。
哪个产品具有你最需要的特点哪个就是最好的。
假如你的应用有以下需求:
复杂事物,如果你不能承受数据丢失的风险或者你想要一个简单的事务编程模型可以选择关系数据库和网格数据库。
扩展性,NoSQL或SQL皆可,目标产品要支持水平扩展、分区、在线增减硬件、负载均衡、自动分片、数据平衡和容错等特性。
追求高可用性,可用Bigtable类型的等支持最终一致性的数据库。
需要处理长期的快速读写,可以看看文档数据库,Key-value数据库或者内存数据库,还可以考虑SSD。
要实现社会化网络,第一选择应该是图数据库。其次像Riak这样支持关系的数据库也可以。一个支持简单SQL join操作的内存关系数据库能够处理数据量不大的情况。Redis’ set 和list 操作就是这样。
假如你的应用有以下需求:
需要不同的访问方式和数据类型的话可以看看文档数据库,它们在这方面很灵活。
大数据量的离线分析首先应该考虑Hadoop,其次是其他支持MapReduce的产品。当然,支持MapReduce与擅长MapReduce处理不是一回事。
如需跨越多个数据中心,可选用基于Bigtable模型的产品,或其分布式的,能解决延迟问题,分区容错性问题的产品
CRUD类型的应用可以考虑文档数据库,这样不需要join就可访问复杂的数据结构。
搜索可以考虑Riak。
需要lists, sets, queues, publish-subscribe等数据结构的话,可以考虑Redis,它的分布式锁等特性也非常有用。
编程友好,如果要使用JSON, HTTP, REST, Javascript等程序员喜闻乐见的数据类型,第一选择就是文档数据库和Key-value数据库。
假如你的应用有以下需求:
用于实时事务处理的物化视图,可以考虑VoltDB,非常适合于快速处理大量事务。
企业级支持及服务级协议 ,可以寻找市场上以此为卖点的产品,如Membase。
要记录连续的大量数据,又对一致性无太高要求,可以看看Bigtable类型数据库,因为它工作在分布式文件系统上,可以处理大规模的写入请求。
需要尽可能使用简单,请考虑PAAS方案,用这种方案你自己几乎不需要做什么。
如果你的产品要卖给企业客户请考虑关系数据库,因为他们习惯于关系数据库。
要动态构建对象间的关系,对象的属性能够动态加减,可以考虑图数据库,因为它不需要schema,可以在代码中随需建模。
要支持大影音文件,可以看看像S3这样的存储服务。NoSQL不适于存储BLOBS,尽管MongoDB也提供了文件服务。
假如你的应用有以下需求:
要快速批量上传大量数据,得寻找支持这种场景的产品。但是大多数产品都不支持批量操作。
易于变化,要选择支持动态schema的文档数据库和 Key-value数据库。它支持可选域,不需要修改schema即可增加、减少域。
为了支持完整性约束,选择支持SQL DDL的数据库,可以在存储过程或者应用代码中实现。
深度连接用图数据库,它支持实体键间的快速定位。
为了让计算靠近数据,减少数据在网络中传送的开销,可以考虑存储过程。关系数据库,网个数据库,文档数据库和Key-value数据库都支持存储过程。
假如你的应用有以下需求:
要存储BLOB数据,可选择Key-value数据库。它可以存储网页或者复杂对象,后者在关系数据库中要用join才能获取,代价高昂。还可以降低延迟。
选择一个经过验证的成熟产品,在处理扩展性问题的时候的时候选择通用的方案(纵向扩展、调优、缓存、数据分片、反范式等等)
多变的数据类型,数据不规整,列数不固定,复杂的数据结构等,考虑文档数据库,Key-value数据库,和Bigtable型数据库。它们的数据类型都比较灵活。
需要快速的关系查询,但是又不想自己实现,那么就选择支持SQL的数据库。
能够在云中操作,自动利用云的一切特性和好处,目前还没有这样的东西。
假如你的应用有以下需求:
支持二级索引,通过不同的键来检索,可以考虑关系数据库和 Cassandra,后者新增了对二级索引的支持。
规模不断增长(真正的大数据场景),但是访问不频繁的数据可以使用Bigtable类型的数据库,因为它的数据存储在一个分布式文件系统上,很容易扩展 。
要和其他服务集成,检查数据库是否提供某种写后同步功能,以便能够捕捉到数据库变化,通知其它系统,保证一致性。
容错性,检查在停电、分区故障以及其他故障场景下写操作是否能够成功。
如果只是为了推动某个方向上的技术创新,似乎没有现成的东西能够达到这个目的,你得自己去创造一个新的。这可不是件容易事。
移动平台上可以用CouchDB/Mobile couchbase.
那个更好?
为了25%的性能提升而迁移到NoSQL是不值得的。
性能测试数据都有其特定的场景,不见得能适合你的情况。
如果你的公司刚刚成立,还没有一个成型的产品,并且你很愿意尝试一些新东西,那么选择SQL还是NoSQL对你而言需要费上些心思(言下之意,一张白纸好作画,没有既有系统的负担就可以随便折腾?)。
数据量不大的时候性能差距并不明显,但是当数据量变大的时候呢?
没有完美的东西,如果你去Amazon的论坛上去看,上面充满了对各种产品的性能和服务的抱怨,GAE也是一样。每个产品都会有问题,你能解决你选择的产品的问题吗?
本文翻译自 35+ Use Cases For Choosing Your Next NoSQL Database,译者:Juliashine
本文作者:天佑 来源:36大数据
CIO之家 www.ciozj.com 微信公众号:imciow
免责声明:本站转载此文章旨在分享信息,不代表对其内容的完全认同。文章来源已尽可能注明,若涉及版权问题,请及时与我们联系,我们将积极配合处理。同时,我们无法对文章内容的真实性、准确性及完整性进行完全保证,对于因文章内容而产生的任何后果,本账号不承担法律责任。转载仅出于传播目的,读者应自行对内容进行核实与判断。请谨慎参考文章信息,一切责任由读者自行承担。