一 软件复杂性是什么?
在开始DDD前,我们应该先回答的一个问题,我们为什么需要DDD?DDD是复杂软件应对之道,所以我们来一起看看,软件的复杂度到底在哪里?
在阿里两年,我感受很深的一个点是,我们不能持续交付不断演进的复杂软件,所以有1.0、2.0、3.0很多的版本,1.0搞不下去了,开始2.0,2.0也搞不下去了,开始3.0,不断循环。
阿里体系复杂度我看来是理解力、不可预测、协作力挑战三个方面。
1 理解力挑战
需求规模庞大,业务数量和类型不断增多,业务相互耦合,不同业务相互影响。供应链有20多个行业,经销、代销、一盘货等各种商业模式,有跨境进口、国内业务、国际化业务,这些纵横导致系统复杂度大幅提升。
业务系统多,边界划分不清,系统间依赖复杂。如供应链商品和共享SELL、AIC和IPM,一直都有边界问题,一个大项目过来,边界问题就得讨论上好几天。
系统结构复杂,因为应对高并发、高稳定性等,功能性代码与非功能性代码混合,如业务代码混杂着各种兜底逻辑、灰度逻辑、重试等等,100行代码,可能业务代码不到30行。
2 不可预测性挑战
3 协作力挑战
二 Why DDD?
DDD设计合适的领域模型来映射现实中的业务,来有效地解决领域中的核心的复杂问题,是对OOAD的扩展和延伸,其解决之道:
三 DDD核心
一 软件复杂性是什么?
在开始DDD前,我们应该先回答的一个问题,我们为什么需要DDD?DDD是复杂软件应对之道,所以我们来一起看看,软件的复杂度到底在哪里?
在阿里两年,我感受很深的一个点是,我们不能持续交付不断演进的复杂软件,所以有1.0、2.0、3.0很多的版本,1.0搞不下去了,开始2.0,2.0也搞不下去了,开始3.0,不断循环。
阿里体系复杂度我看来是理解力、不可预测、协作力挑战三个方面。
1 理解力挑战
需求规模庞大,业务数量和类型不断增多,业务相互耦合,不同业务相互影响。供应链有20多个行业,经销、代销、一盘货等各种商业模式,有跨境进口、国内业务、国际化业务,这些纵横导致系统复杂度大幅提升。
业务系统多,边界划分不清,系统间依赖复杂。如供应链商品和共享SELL、AIC和IPM,一直都有边界问题,一个大项目过来,边界问题就得讨论上好几天。
系统结构复杂,因为应对高并发、高稳定性等,功能性代码与非功能性代码混合,如业务代码混杂着各种兜底逻辑、灰度逻辑、重试等等,100行代码,可能业务代码不到30行。
2 不可预测性挑战
3 协作力挑战
二 Why DDD?
DDD设计合适的领域模型来映射现实中的业务,来有效地解决领域中的核心的复杂问题,是对OOAD的扩展和延伸,其解决之道:
三 DDD核心
1 通用语言
通用语言是提炼领域知识的产出物,获得统一语言就是需求分析的过程,也是团队中各个角色就系统目标、范围与具体功能达成一致的过程。
领域语言团队专有,负责解释和维护,相同名称概念,跨出这个团队,理解可以完全不一样。
领域专家、产品经理、开发人员共同的语言,这种语言是将领域专家和技术人员联系在一起的纽带。
在各种文档和平时沟通中,保持概念统一,特别提一下,做一个中文对照, 把概念和代码连接起来,在代码做到概念名称统一,减少混淆。
通用语言价值:
2 分层架构
DDD第二个核心是分层架构,分离模型。优秀的架构应该是什么样子?关注点是分离的,可以分而治之,可测试性好。
一个人同时要做多件事情的时候,难免手忙脚乱。代码也一样,一段代码要处理各种事情的时候,也会乱成一团,所以我们要分解开来,各个击破。
商品域领域模型,在分层架构中的位置,如下:
CQRS模式:领域模型在应用层下面,command才走领域模型;查询和搜索服务不走。
tunnel层,对接db、外部数据资源访问,领域和模型解耦,类似DAO。
外部通过SPI和模型交互,六边形的adapter模式。
3 DDD要素
1)实体:有id,有生命周期和状态。有属性,有行为。外部事件会触发他的行为和状态变化。
实体和vo的区分,vo属性不能修改,使用final修饰。vo为表达模型减负,如商品有100多个属性,铺平开不能体现结构化,不能体现分层分类,将相似描述性属性分组封装成一个个vo。
2)为什么需要service,如批量操作多个实体、跨实体操作,如商品复制,转账。
商品域的工程架构:
serivce职责是:实体创建,持久化,跨实体操作等。
不同层使用不同数据对象,tunnel使用dataobjects,面向存储,需要和实体相互转换。
实体间有关系,可以动态加载关联对象;dataobjects只有数据,没有行为,一般也不会有关系。
4 边界上下文
上下文映射:
四 DDD实施
1 DDD实施的挑战
2 什么是领域知识?
领域知识有分层分类,平台通用商业规则,是领域模型主要输入,商家个性化不能下沉到领域模型层。
3 领域知识提炼,需求和链路5W1H分析法
两阶段分析:用户故事、链路和边界分析。
通过这个分析,获取用户需求,和全链路分工。
4 领域知识提炼,结构化分析
5 思考方式的转变
领域驱动,在模型阶段不会关注数据设计、不会关注存储、不会关注消息怎么发,业务和技术视角关注点做了分离。
五 商品域实践相关
商品域工程架构:
商品域模型更新readme,保持模型不断演进。否则会APP层会越来越大,模型层越来越小,最后头重脚轻,领域坍塌了。
本文作者:侧帽 来源:阿里开发者
CIO之家 www.ciozj.com 微信公众号:imciow